The fractional Cheeger problem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fractional Cheeger problem

Given an open and bounded set Ω ⊂ R , we consider the problem of minimizing the ratio between the s−perimeter and the N−dimensional Lebesgue measure among subsets of Ω. This is the nonlocal version of the well-known Cheeger problem. We prove various properties of optimal sets for this problem, as well as some equivalent formulations. In addition, the limiting behaviour of some nonlinear and non...

متن کامل

An Introduction to the Cheeger Problem

Given a bounded domain Ω ⊂ R with Lipschitz boundary, the Cheeger problem consists of finding a subset E of Ω such that its ratio perimeter/volume is minimal among all subsets of Ω. This article is a collection of some known results about the Cheeger problem which are spread in many classical and new papers. Full text

متن کامل

Lecture 03 : The Sparsest Cut Problem and Cheeger ’ s Inequality

In a social network graph, a person is regarded as a vertex, and if person u and person v know each other, then vertex u and vertex v forms an edge (u, v). Intuitively a community is thought as a set S of people which has the following two properties: (1) people in S are likely know each other, and (2) people out of set S (we call this set S̄) are less likely to know each other. So communities a...

متن کامل

the problem of divine hiddenness

این رساله به مساله احتجاب الهی و مشکلات برهان مبتنی بر این مساله میپردازد. مساله احتجاب الهی مساله ای به قدمت ادیان است که به طور خاصی در مورد ادیان ابراهیمی اهمیت پیدا میکند. در ادیان ابراهیمی با توجه به تعالی خداوند و در عین حال خالقیت و حضور او و سخن گفتن و ارتباط شهودی او با بعضی از انسانهای ساکن زمین مساله ای پدید میاید با پرسشهایی از قبیل اینکه چرا ارتباط مستقیم ویا حداقل ارتباط وافی به ب...

15 صفحه اول

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Interfaces and Free Boundaries

سال: 2014

ISSN: 1463-9963

DOI: 10.4171/ifb/325